|
R. Geirhos,
K. Narayanappa,
B. Mitzkus,
T. Thieringer,
M. Bethge,
F. A. Wichmann, and
W. Brendel
Partial success in closing the gap between human and machine vision
Advances in Neural Information Processing Systems 34,
2021
Code,
URL,
BibTex
|
|
R. Geirhos,
K. Meding, and
F. A. Wichmann
Beyond accuracy: quantifying trial-by-trial behaviour of CNNs and humans by measuring error consistency
Advances in Neural Information Processing Systems 33,
2020
Code,
URL,
BibTex
|
|
R. Geirhos,
P. Rubisch,
C. Michaelis,
M. Bethge,
F. A. Wichmann, and
W. Brendel
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
International Conference on Learning Representations (ICLR),
2019
Code,
URL,
BibTex
|
|
A. Mathis,
P. Mamidanna,
K. Cury,
T. Abe,
V. Murthy,
M. Mathis, and
M. Bethge
DeepLabCut: markerless pose estimation of user-defined body parts with deep learning.
Nature Neuroscience,
21(9),
1281-1289,
2018
Code,
URL,
DOI,
BibTex
|
|
R. Geirhos,
C. R. M. Temme,
J. Rauber,
H. H. Schütt,
M. Bethge, and
F. A. Wichmann
Generalisation in humans and deep neural networks
Advances in Neural Information Processing Systems 31,
2018
Code,
URL,
BibTex
|
|
W. Brendel,
J. Rauber, and
M. Bethge
Decision-Based Adversarial Attacks: Reliable Attacks Against Black-Box Machine Learning Models
International Conference on Learning Representations,
2018
#adversarial attacks,
#adversarial examples,
#adversarials
Code,
URL,
OpenReview,
BibTex
|
|
M. Kümmerer,
T. S. Wallis,
L. A. Gatys, and
M. Bethge
Understanding Low- and High-Level Contributions to Fixation Prediction
The IEEE International Conference on Computer Vision (ICCV),
2017
Code,
URL,
PDF,
model webservice,
BibTex
|
|
J. Rauber,
W. Brendel, and
M. Bethge
Foolbox: A Python toolbox to benchmark the robustness of machine learning models
Reliable Machine Learning in the Wild Workshop, 34th International Conference on Machine Learning,
2017
#adversarial attacks,
#adversarial examples,
#adversarials
Code,
URL,
BibTex
|
|
A. S. Ecker,
G. H. Denfield,
M. Bethge, and
A. S. Tolias
On the Structure of Neuronal Population Activity under Fluctuations in Attentional State
Journal of Neuroscience,
36(5),
1775-1789,
2016
#attention,
#gain modulation,
#noise correlations,
#population coding
Code,
URL,
DOI,
PDF,
BibTex
|
|
L. A. Gatys,
A. S. Ecker,
T. Tchumatchenko, and
M. Bethge
Synaptic unreliability facilitates information transmission in balanced cortical populations
Physical Review E,
91(6),
62707,
2015
#synaptic noise,
#balanced state,
#neural population coding
Code,
URL,
DOI,
PDF,
BibTex
|
|
A. S. Ecker,
P. Berens,
R. J. Cotton,
M. Subramaniyan,
G. H. Denfield,
C. R. Cadwell,
S. M. Smirnakis,
M. Bethge,
et al.
State dependence of noise correlations in macaque primary visual cortex
Neuron,
82(1),
235-248,
2014
#noise correlations,
#gpfa,
#population,
#anesthesia,
#macaque
Code,
URL,
DOI,
PDF,
BibTex
|
|
L. Theis,
A. M. Chagas,
D. Arnstein,
C. Schwarz, and
M. Bethge
Beyond GLMs: A Generative Mixture Modeling Approach to Neural System Identification
PLoS Computational Biology,
9(11),
2013
#generalized linear model,
#spiking neurons,
#mixture models
Code,
URL,
DOI,
PDF,
BibTex
|
|
R. M. Haefner,
S. Gerwinn,
J. H. Macke, and
M. Bethge
Inferring decoding strategies from choice probabilities in the presence of correlated variability
Nature Neuroscience,
16,
235-242,
2013
#noise correlations,
#choice probabilities,
#decision making,
#population coding
Code,
URL,
PDF,
Perspective,
BibTex
|
|
L. Theis,
J. Sohl-Dickstein, and
M. Bethge
Training sparse natural image models with a fast Gibbs sampler of an extended state space
Advances in Neural Information Processing Systems 25,
2012
#natural image statistics,
#ica,
#overcompleteness
Code,
PDF,
Supplemental,
Poster,
BibTex
|
|
P. Berens,
A. S. Ecker,
R. J. Cotton,
W. J. Ma,
M. Bethge, and
A. S. Tolias
A fast and simple population code for orientation in primate V1
Journal of Neuroscience,
32(31),
10618-10626,
2012
#population coding,
#orientation,
#v1,
#macaque,
#logistic regression,
#multi-tetrode recordings,
#noise correlations
Code,
URL,
PDF,
Dataset,
BibTex
|
|
L. Theis,
R. Hosseini, and
M. Bethge
Mixtures of Conditional Gaussian Scale Mixtures Applied to Multiscale Image Representations
PLoS ONE,
7(7),
2012
#natural image statistics,
#gaussian scale mixtures,
#random fields,
#mcgsm
Code,
DOI,
PDF,
BibTex
|
|
L. Theis,
S. Gerwinn,
F. Sinz, and
M. Bethge
In All Likelihood, Deep Belief Is Not Enough
Journal of Machine Learning Research,
12,
3071-3096,
2011
#natural image statistics,
#deep belief networks,
#boltzmann machines,
#deep learning
Code,
PDF,
BibTex
|
|
A. S. Ecker,
P. Berens,
A. S. Tolias, and
M. Bethge
The effect of noise correlations in populations of diversely tuned neurons
The Journal of Neuroscience,
31(40),
14272-14283,
2011
#noise correlations,
#population coding,
#fisher information,
#orientation
Code,
URL,
DOI,
PDF,
BibTex
|
|
P. Berens,
A. S. Ecker,
S. Gerwinn,
A. S. Tolias, and
M. Bethge
Reassessing optimal neural population codes with neurometric functions
Proceedings of the National Academy of Sciences of the United States of America,
108(11),
4423-4428,
2011
#fisher information,
#population coding,
#mean squared error,
#discrimination error,
#neurometric function
Code,
URL,
PDF,
BibTex
|
|
S. Gerwinn,
J. Macke, and
M. Bethge
Bayesian inference for generalized linear models for spiking neurons
Frontiers in Computational Neuroscience,
4,
2010
#bayesian inference,
#generalized linear model,
#spiking neurons
Code,
URL,
DOI,
PDF,
BibTex
|
|
J. H. Macke,
S. Gerwinn,
L. White,
M. Kaschube, and
M. Bethge
Gaussian process methods for estimating cortical maps
NeuroImage,
56(2),
570-581,
2010
#gaussian process
Code,
URL,
DOI,
PDF,
BibTex
|
|
J. Eichhorn,
F. Sinz, and
M. Bethge
Natural Image Coding in V1: How Much Use Is Orientation Selectivity?
PLoS Computational Biology,
5(4),
2009
#natural image models,
#natural image statistics,
#normative models
Code,
DOI,
PDF,
BibTex
|
|
J. Macke,
P. Berens,
A. Ecker,
A. Tolias, and
M. Bethge
Generating Spike Trains with Specified Correlation-Coeffcients
Neural Computation,
2009
#spike train,
#correlated poisson,
#multivariate poisson,
#noise correlations,
#discretized gaussian
Code,
PDF,
BibTex
|
|
F. H. Sinz,
E. Simoncelli, and
M. Bethge
Hierarchical Modeling of Local Image Features through Lp-Nested Symmetric Distributions
Advances in Neural Information Processing Systems 22,
2009
#natural image statistics,
#ica,
#lp-spherically symmetric distributions,
#nu-spherical symmetric distributions
Code,
PDF,
BibTex
|
|
J. H. Macke,
S. Gerwinn,
M. Kaschube,
L. E. White, and
M. Bethge
Bayesian estimation of orientation preference maps
Advances in Neural Information Processing Systems 22,
2009
#bayesian inference,
#orientation maps
Code,
PDF,
BibTex
|
|
S. Gerwinn,
P. Berens, and
M. Bethge
A joint maximum-entropy model for binary neural population patterns and continuous signals
Advances in Neural Information Processing Systems 22,
2009
#maximum entropy,
#population coding
Code,
PDF,
BibTex
|
|
P. Berens,
S. Gerwinn,
A. S. Ecker, and
M. Bethge
Neurometric function analysis of population codes
Advances in Neural Information Processing Systems 22,
2009
#population coding,
#neurometric function
Code,
PDF,
BibTex
|
|
P. Berens
CircStat: A Matlab Toolbox for Circular Statistics
Journal of Statistical Software,
2009
#circular statistics,
#directional statistics,
#software,
#matlab
Code,
URL,
PDF,
BibTex
|
|
M. Bethge and
P. Berens
Near-Maximum Entropy Models for Binary Neural Representations of Natural Images
Advances in Neural Information Processing Systems 20,
2008
#population coding,
#natural image statistics,
#maximum entropy
Code,
PDF,
BibTex
|
|
F. Sinz and
M. Bethge
The Conjoint Effect of Divisive Normalization and Orientation Selectivity on Redundancy Reduction
Advances in Neural Information Processing Systems 21,
2008
#contrast gain control,
#normative models,
#natural image statistics,
#lp-spherically symmetric distributions
Code,
PDF,
BibTex
|